ON THE (u, p) PROBLEM IN THE THEORY OF ELASTICITY

I. Yu. Tsvelodub

Abstract

A problem of the theory of elasticity is considered for a body with vectors of displacements \boldsymbol{u} and loads \boldsymbol{p} simultaneously defined on one part of the body and with undefined conditions on the remaining part of the body. For a doubly connected domain, where the vectors \boldsymbol{u} and \boldsymbol{p} are set on one of its boundaries (inner or outer), an iterative method based on reduction of the initial problem to a sequence of mixed problems is justified.

Key words: conventionally well-posed problem, doubly connected elastic domain, iterative method of the solution.

The problem of finding the stress-strain state in a body on the basis of overdetermined conditions on some part of the body surface (with known vectors of displacements \boldsymbol{u} and loads \boldsymbol{p}) and undetermined conditions on the other part of the surface was called the $(\boldsymbol{u}, \boldsymbol{p})$ problem [1, 2]. This problem is a conventionally well-posed problem and reduces, in the case of an isotropic elastic domain, to consecutive solution of the Cauchy problem for the Laplace equation [2], which is known to be well-posed in the class of solutions limited in their absolute values [3]. Hence, the $(\boldsymbol{u}, \boldsymbol{p})$ problem is also well-posed in the class of solutions limited in their absolute values. To solve the latter problem, Dveres and Fomin [4] proposed an iterative process yielding a mixed problem at each iteration. Numerical experiments showed that such an algorithm possesses a fairly high resolution and noise immunity. The convergence of consecutive approximations to the solution of the ($\boldsymbol{u}, \boldsymbol{p}$) problem, however, was not proved in [4]. Such a proof is given in the present paper for a doubly connected elastic domain with the vectors \boldsymbol{u} and \boldsymbol{p} being set on its inner (outer) boundary and undefined conditions on the outer (inner) boundary.

1. Formulation of the Problem. Let us consider an elastic body, which occupies a doubly connected spatial domain v with inner and outer boundaries (S_{1} and S_{2}, respectively) satisfying necessary smoothness conditions [5]; this domain is assumed to obey Hooke's law

$$
\begin{equation*}
\varepsilon_{k l}=a_{k l m n} \sigma_{m n}, \quad \sigma_{k l}=b_{k l m n} \varepsilon_{m n} \tag{1.1}
\end{equation*}
$$

Hereinafter, $\varepsilon_{k l}, \sigma_{k l}, a_{k l m n}$, and $b_{k l m n}$ are the components of strain tensors, stress tensors, elastic compliances, and elastic moduli, respectively; the subscripts k and l acquire the values 1,2 , and 3 ; summation is performed over repeated subscripts k and l.

The strains $\varepsilon_{k l}$ are expressed in terms of the components u_{k} of the displacement vector \boldsymbol{u} by the Cauchy relations

$$
\begin{equation*}
\varepsilon_{k l}=(1 / 2)\left(u_{k, l}+u_{l, k}\right), \tag{1.2}
\end{equation*}
$$

where the subscript after the comma indicates a partial derivative with respect to the corresponding coordinate.
There are no bulk forces, and the equilibrium equations have the form

$$
\begin{equation*}
\sigma_{k l, l}=0 \tag{1.3}
\end{equation*}
$$

The displacements and loads are known on one boundary of the domain v, e.g., on the boundary S_{1}, i.e.,

$$
\begin{equation*}
\boldsymbol{u}=\boldsymbol{u}_{*}, \quad \boldsymbol{p}=\boldsymbol{p}_{*} \quad \text { on } \quad S_{1} \tag{1.4}
\end{equation*}
$$

Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090; itsvel@hydro.nsc.ru. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 3, pp. 100-103, May-June, 2006. Original article submitted June 29, 2005.
where $\boldsymbol{p}=\left\{p_{k}\right\}, p_{k}=\sigma_{k l} n_{l}$ and n_{k} are the components of a unit vector of the external normal to S_{1}, and $\boldsymbol{u}_{*}=\left\{u_{k *}\right\}$ and $\boldsymbol{p}_{*}=\left\{p_{k *}\right\}$ are functions defined on S_{1}. We assume that $u_{k *} \in H^{1 / 2}\left(S_{1}\right)$ and $p_{k *} \in H^{-1 / 2}\left(S_{1}\right)$ (the spaces used here and in what follows are defined in [5]).

It should be noted that problem (1.1)-(1.4) formulated for determining the stress-strain state in the domain v arises also in considering a linearly elastic (viscoelastic) domain containing a physically nonlinear inclusion, where one has to generate a necessary (e.g., homogeneous) stress-strain state by choosing appropriate loads on the outer boundary of the domain $[6,7]$ or to obtain a necessary current or final shape of the inclusion, i.e., the corresponding displacements of the points of its boundary [8].
2. Iterative Method of Solving Problem (1.1)-(1.4). To solve the ($\boldsymbol{u}, \boldsymbol{p}$) problem [for a simply connected domain v with the boundary $S=S_{1} \cup S_{2}$ with conditions (1.4) being set on some part S_{1} of this boundary], Dveres and Fomin [4] proposed and tested the following iterative process. At the zeroth iteration $(n=0)$, it is assumed that $\boldsymbol{p}=\boldsymbol{p}_{*}$ on S_{1} and $\boldsymbol{u}=\boldsymbol{u}^{0}$ on $S_{2}\left(\boldsymbol{u}^{0}\right.$ is an arbitrary piecewise-continuous function, e.g., $\boldsymbol{u}^{0}=0$). Solving this mixed problem, one can determine the stress-strain state in the domain v and the vectors \boldsymbol{u}^{0} and \boldsymbol{p}^{0} on the entire boundary $S=S_{1} \cup S_{2}$. After that, the first condition in (1.4) is chosen on the part S_{1} of the boundary at odd iterations and the second condition in (1.4) is chosen at even iterations; the loads and displacements found at the previous iteration are used on the part S_{2} of the boundary. Thus, the boundary conditions have the form

$$
\begin{align*}
\boldsymbol{u}^{2 n-1}=\boldsymbol{u}_{*} \quad \text { on } \quad S_{1}, \quad \boldsymbol{p}^{2 n-1}=\boldsymbol{p}^{2 n-2} \quad \text { on } S_{2}, \\
\boldsymbol{p}^{2 n}=\boldsymbol{p}_{*} \quad \text { on } \quad S_{1}, \quad \boldsymbol{u}^{2 n}=\boldsymbol{u}^{2 n-1} \quad \text { on } \quad S_{2} \quad(n=1,2 \ldots) . \tag{2.1}
\end{align*}
$$

As was noted above, the convergence of this iterative process to the solution of the $(\boldsymbol{u}, \boldsymbol{p})$ problem was not proved in [4].

Let us demonstrate that the sequence of the solutions \boldsymbol{u}^{n} of the mixed problems (1.1)-(1.3), (2.1) for the doubly connected domain considered reduces to the solution of the initial problem (1.1)-(1.4). We need to clarify that the vector $\boldsymbol{u}^{0}=\left\{u_{k}^{0}\right\}$ on S_{2} at the zeroth iteration is not arbitrary but is chosen in a manner that $u_{k}^{0} \in H^{1 / 2}\left(S_{2}\right)$. Therefore, the solution \boldsymbol{u}^{0} in the domain v of the mixed problem exists, and $u_{k}^{0} \in H^{1}(v)$ [5]. Then, with allowance for the above-made assumptions about the functions \boldsymbol{u}_{*} and \boldsymbol{p}_{*} in Eq. (1.4), it follows from Eq. (2.1) that $u_{k}^{n} \in H^{1}(v)$ for the displacement vector $\boldsymbol{u}^{n}=\left\{u_{k}^{n}\right\}$ at each iteration, because the condition $u_{k}^{n} \in H^{1 / 2}\left(S_{2}\right)$ or $p_{k}^{n} \in H^{-1 / 2}\left(S_{2}\right)$ is satisfied on S_{2}.

We introduce the norm for the field of displacements

$$
\|\boldsymbol{u}\|=\left(\int_{v} b_{k l m n} u_{k, l} u_{m, n} d v\right)^{1 / 2}
$$

which is equivalent to the norm $\|\boldsymbol{u}\|_{H^{1}(v)}[5,8]$. Because of (1.1)-(1.3) and the known equation of virtual work, we obtain the equality

$$
\begin{equation*}
\|\boldsymbol{u}\|^{2}=\int_{v} \varepsilon_{k l} \sigma_{k l} d v=\int_{S} \boldsymbol{u} \cdot \boldsymbol{p} d S \quad\left(S=S_{1} \cup S_{2}\right) \tag{2.2}
\end{equation*}
$$

We consider the numerical sequence $\left\{a_{n}\right\}\left(a_{n}=\left\|\Delta \boldsymbol{u}^{n}\right\|^{2}\right.$, where $\Delta \boldsymbol{u}^{n}=\boldsymbol{u}^{n+1}-\boldsymbol{u}^{n}$ and $\left.n=1,2, \ldots\right)$. Based on Eq. (2.2) and the equality $\left.\Delta \boldsymbol{u}^{n} \cdot \Delta \boldsymbol{p}^{n}\right|_{S_{2}}=0$ following from Eq. (2.1), the general term of this numerical sequence can be presented as

$$
\begin{equation*}
a_{n}=\int_{S_{1}} \Delta \boldsymbol{u}^{n} \cdot \Delta \boldsymbol{p}^{n} d S \geq 0 \quad(n=1,2, \ldots) \tag{2.3}
\end{equation*}
$$

From Eqs. (2.1) and (2.3), we find

$$
\begin{gather*}
a_{2 n-1}=\int_{S_{1}}\left(\boldsymbol{p}_{*}-\boldsymbol{p}^{2 n-1}\right) \cdot\left(\boldsymbol{u}^{2 n}-\boldsymbol{u}_{*}\right) d S, \quad a_{2 n}=\int_{S_{1}}\left(\boldsymbol{p}_{*}-\boldsymbol{p}^{2 n+1}\right) \cdot\left(\boldsymbol{u}^{2 n}-\boldsymbol{u}_{*}\right) d S \\
a_{2 n+1}=\int_{S_{1}}\left(\boldsymbol{p}_{*}-\boldsymbol{p}^{2 n+1}\right) \cdot\left(\boldsymbol{u}^{2 n+2}-\boldsymbol{u}_{*}\right) d S \tag{2.4}
\end{gather*}
$$

Herefrom, we obtain

$$
a_{2 n}-a_{2 n-1}=\int_{S_{1}}\left(\boldsymbol{p}^{2 n-1}-\boldsymbol{p}^{2 n+1}\right) \cdot\left(\boldsymbol{u}^{2 n}-\boldsymbol{u}_{*}\right) d S=\int_{S}\left(\boldsymbol{p}^{2 n-1}-\boldsymbol{p}^{2 n+1}\right) \cdot\left(\boldsymbol{u}^{2 n}-\boldsymbol{u}^{2 n-1}\right) d S
$$

because $\boldsymbol{u}^{2 n-1}=\boldsymbol{u}_{*}$ on S_{1} and $\boldsymbol{u}^{2 n-1}=\boldsymbol{u}^{2 n}$ on S_{2}. Owing to Betti's identity and the equalities $\boldsymbol{u}^{2 n-1}=\boldsymbol{u}^{2 n+1}=\boldsymbol{u}_{*}$ on S_{1} and $\boldsymbol{p}^{2 n}=\boldsymbol{p}^{2 n+1}$ on S_{2}, we obtain

$$
a_{2 n}-a_{2 n-1}=\int_{S}\left(\boldsymbol{u}^{2 n-1}-\boldsymbol{u}^{2 n+1}\right) \cdot\left(\boldsymbol{p}^{2 n}-\boldsymbol{p}^{2 n-1}\right) d S=-\left\|\boldsymbol{u}^{2 n-1}-\boldsymbol{u}^{2 n+1}\right\|^{2}
$$

Similarly to the use of Eq. (2.4) and the equalities $\boldsymbol{p}^{2 n}=\boldsymbol{p}^{2 n+2}=\boldsymbol{p}_{*}$ on S_{1} and $\boldsymbol{p}^{2 n}=\boldsymbol{p}^{2 n+1}$ and $\boldsymbol{u}^{2 n+1}$ $=\boldsymbol{u}^{2 n+2}$ on S_{2}, we obtain

$$
\begin{aligned}
a_{2 n+1}-a_{2 n}= & \int_{S_{1}}\left(\boldsymbol{p}_{*}-\boldsymbol{p}^{2 n+1}\right) \cdot\left(\boldsymbol{u}^{2 n+2}-\boldsymbol{u}^{2 n}\right) d S=\int_{S}\left(\boldsymbol{p}^{2 n}-\boldsymbol{p}^{2 n+1}\right) \cdot\left(\boldsymbol{u}^{2 n+2}-\boldsymbol{u}^{2 n}\right) d S \\
& =\int_{S}\left(\boldsymbol{u}^{2 n}-\boldsymbol{u}^{2 n+1}\right) \cdot\left(\boldsymbol{p}^{2 n+2}-\boldsymbol{p}^{2 n}\right) d S=-\left\|\boldsymbol{u}^{2 n}-\boldsymbol{u}^{2 n+2}\right\|^{2}
\end{aligned}
$$

Thus, for all n, we have

$$
\begin{equation*}
a_{n}=a_{n-1}-\left\|\boldsymbol{u}^{n+1}-\boldsymbol{u}^{n-1}\right\|^{2} \tag{2.5}
\end{equation*}
$$

It follows from Eq. (2.5) that sequence (2.3) is decreasing and bounded from below ($a_{n} \geq 0$). Therefore, there exists $\lim _{n \rightarrow \infty} a_{n} \geq 0$. Then, from Eq. (2.5) we obtain $\lim _{n \rightarrow \infty}\left\|\boldsymbol{u}^{n+1}-\boldsymbol{u}^{n-1}\right\|=0$, i.e., $\boldsymbol{u}^{n+1} \rightarrow \boldsymbol{u}^{n-1}$ in v and $\boldsymbol{u}^{n+1} \rightarrow \boldsymbol{u}^{n-1}$ and $\boldsymbol{p}^{n+1} \rightarrow \boldsymbol{p}^{n-1}$ on S.

By virtue of Eq. (2.1), on the part S_{2} of the boundary, we have $\boldsymbol{u}^{2 n+1} \rightarrow \boldsymbol{u}^{2 n-1}=\boldsymbol{u}^{2 n}$ and $\boldsymbol{p}^{2 n+1}=\boldsymbol{p}^{2 n}$ at odd iterations and $\boldsymbol{u}^{2 n}=\boldsymbol{u}^{2 n-1}$ and $\boldsymbol{p}^{2 n}=\boldsymbol{p}^{2 n+1} \rightarrow \boldsymbol{p}^{2 n-1}$ at even iterations.

Thus, $\Delta \boldsymbol{u}^{n}=\boldsymbol{u}^{n+1}-\boldsymbol{u}^{n} \rightarrow 0$ and $\Delta \boldsymbol{p}^{n}=\boldsymbol{p}^{n+1}-\boldsymbol{p}^{n} \rightarrow 0$ on S_{2} as $n \rightarrow \infty$.
Considering the $\left(\Delta \boldsymbol{u}^{n}, \Delta \boldsymbol{p}^{n}\right)$ problem for the domain v with the vectors $\Delta \boldsymbol{u}^{n}$ and $\Delta \boldsymbol{p}^{n}$ being known at the outer boundary S_{2} of this domain [from the solution of problem (1.1)-(1.3), (2.1)], with $\Delta u_{k}^{n} \in H^{1 / 2}\left(S_{2}\right)$ and $\Delta p_{k}^{n} \in H^{-1 / 2}\left(S_{2}\right)$, and with strains $\Delta \varepsilon_{k l}^{n}$ and stresses $\Delta \sigma_{k l}^{n}$ being related through Hooke's law (1.1), we conclude that $\Delta u_{k}^{n} \in H^{1}(v) \rightarrow 0$ because $\Delta u_{k}^{n} \rightarrow 0$ and $\Delta p_{k}^{n} \rightarrow 0$ on S_{2}. Hence, $\Delta \boldsymbol{p}^{n} \rightarrow 0$ and $\Delta \boldsymbol{u}^{n} \rightarrow 0$ on S_{1}, i.e., $\boldsymbol{p}^{n} \rightarrow \boldsymbol{p}_{*}$ and $\boldsymbol{u}^{n} \rightarrow \boldsymbol{u}_{*}$, which was to be proved.

It should also be noted that, if the equality $a_{n}=a_{n-1}$ holds for some value of n, i.e., $\boldsymbol{u}^{n+1}=\boldsymbol{u}^{n-1}$ in v in accordance with Eq. (2.5), this means that the exact solution of the ($\boldsymbol{u}, \boldsymbol{p})$ problem is obtained already at the zeroth iteration, i.e., the value of the displacement vector \boldsymbol{u}^{0} on S_{2} is correctly "guessed." Indeed, let, e.g., $\boldsymbol{u}^{2 n+1}=\boldsymbol{u}^{2 n-1}$ in v. Then, from Eq. (2.1), we obtain $\boldsymbol{p}=\boldsymbol{p}^{2 n-1}=\boldsymbol{p}^{2 n-2}$ and $\boldsymbol{u}=\boldsymbol{u}^{2 n-1}$ on the boundary S_{2} at the $(2 n-1)$ th iteration, $\boldsymbol{u}=\boldsymbol{u}^{2 n}=\boldsymbol{u}^{2 n-1}$ and $\boldsymbol{p}=\boldsymbol{p}^{2 n}$ at the $(2 n)$ th iteration, $\boldsymbol{u}=\boldsymbol{u}^{2 n+1}=\boldsymbol{u}^{2 n-1}$ and $\boldsymbol{p}=\boldsymbol{p}^{2 n+1}=\boldsymbol{p}^{2 n-1}=\boldsymbol{p}^{2 n}$ at the $(2 n+1)$ th iteration, i.e., we have $\boldsymbol{u}=\boldsymbol{u}^{2 n-1}$ and $\boldsymbol{p}=\boldsymbol{p}^{2 n-1}$ on S_{2} at even and odd iterations. By virtue of the uniqueness of the solution of the ($\boldsymbol{u}, \boldsymbol{p})$ problem (for the vectors \boldsymbol{u} and \boldsymbol{p} being set on S_{2}), we obtain $\boldsymbol{p}^{2 n-1}=\boldsymbol{p}_{*}$ and $\boldsymbol{u}^{2 n-1}=\boldsymbol{u}_{*}$ on S_{1}; the found values of $\boldsymbol{u}^{2 n-1}$ and $\boldsymbol{p}^{2 n-1}$ on S_{2} correspond to the exact solution. As in all previous (and subsequent) approximations, these quantities $\left(\boldsymbol{u}^{2 n-1}\right.$ or $\left.\boldsymbol{p}^{2 n-1}\right)$ are contained in the boundary conditions on S_{2} (e.g., $\boldsymbol{p}^{2 n-2}=\boldsymbol{p}^{2 n-1}$ on S_{2}), then we obtain the exact solution of this problem, including that for $n=0$, by going "upward" through iterations.

We can also note that, if the boundary conditions on S_{1} are supplemented by similar conditions on S_{2}, i.e.,

$$
\begin{array}{rll}
\boldsymbol{u}^{2 n-1}=\boldsymbol{u}_{*} \quad \text { on } \quad S_{1}, \quad \boldsymbol{u}^{2 n-1}=\boldsymbol{u}^{2 n-2} \quad \text { on } \quad S_{2} \\
\boldsymbol{p}^{2 n}=\boldsymbol{p}_{*} \quad \text { on } \quad S_{1}, \quad \boldsymbol{p}^{2 n}=\boldsymbol{p}^{2 n-1} \quad \text { on } \quad S_{2} \tag{2.6}
\end{array}
$$

is used instead of Eq. (2.1), the iterative process becomes divergent. (This fact was noted in [4], but no proof was given.) Indeed, Eqs. (2.4) are also valid for the sequence $a_{n}=\left\|\Delta \boldsymbol{u}^{n}\right\|^{2}$, but it follows in this case from Eq. (2.6) and Betti's identity that the equality $a_{n}=a_{n-1}+\left\|\boldsymbol{u}^{n+1}-\boldsymbol{u}^{n-1}\right\|^{2}$ holds for all n, i.e., the sign in the right side of Eq. (2.5) changes to the opposite one, and the sequence $\left\{a_{n}\right\}$ becomes increasing.

This work was supported by the Russian Foundation for Basic Research (Grant No. 05-01-00673).

REFERENCES

1. A. A. Shvab, "Nonclassical elastoplastic problem," Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 1, 140-146 (1988).
2. A. A. Shvab, "Ill-posed static problems of the elasticity theory" Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 6, 98-106 (1989).
3. M. M. Lavrent'ev, "The Cauchy problem for the Laplace equation," Izv. Akad. Nauk SSSR, Ser. Mat., 20, 819-842 (1956).
4. M. N. Dveres and A. V. Fomin, "Analogy of methods of solving contact problems of stress state determination," Mashinovedenie, No. 6, 76-81 (1985).
5. G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Springer Verlag (1976).
6. I. Yu. Tsvelodub, "Inverse problem for an elastic medium containing a physically nonlinear inclusion," Prikl. Mat. Mekh., 64, No. 3, 424-430 (2000).
7. I. Yu. Tsvelodub, "Spatial inverse problem for a physically nonlinear inhomogeneous medium," Prikl. Mat. Mekh., 69, No. 2, 290-295 (2005).
8. I. Yu. Tsvelodub, "Inverse problems of inelastic deformation of inhomogeneous media," Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 2, 61-69 (2005).
