ON THE (u, p) PROBLEM IN THE THEORY OF ELASTICITY

I. Yu. Tsvelodub

A problem of the theory of elasticity is considered for a body with vectors of displacements \mathbf{u} and loads \mathbf{p} simultaneously defined on one part of the body and with undefined conditions on the remaining part of the body. For a doubly connected domain, where the vectors \mathbf{u} and \mathbf{p} are set on one of its boundaries (inner or outer), an iterative method based on reduction of the initial problem to a sequence of mixed problems is justified.

Key words: conventionally well-posed problem, doubly connected elastic domain, iterative method of the solution.

The problem of finding the stress-strain state in a body on the basis of overdetermined conditions on some part of the body surface (with known vectors of displacements \boldsymbol{u} and loads \boldsymbol{p}) and undetermined conditions on the other part of the surface was called the $(\boldsymbol{u}, \boldsymbol{p})$ problem [1, 2]. This problem is a conventionally well-posed problem and reduces, in the case of an isotropic elastic domain, to consecutive solution of the Cauchy problem for the Laplace equation [2], which is known to be well-posed in the class of solutions limited in their absolute values [3]. Hence, the $(\boldsymbol{u}, \boldsymbol{p})$ problem is also well-posed in the class of solutions limited in their absolute values. To solve the latter problem, Dveres and Fomin [4] proposed an iterative process yielding a mixed problem at each iteration. Numerical experiments showed that such an algorithm possesses a fairly high resolution and noise immunity. The convergence of consecutive approximations to the solution of the $(\boldsymbol{u}, \boldsymbol{p})$ problem, however, was not proved in [4]. Such a proof is given in the present paper for a doubly connected elastic domain with the vectors \boldsymbol{u} and \boldsymbol{p} being set on its inner (outer) boundary and undefined conditions on the outer (inner) boundary.

1. Formulation of the Problem. Let us consider an elastic body, which occupies a doubly connected spatial domain v with inner and outer boundaries (S_1 and S_2 , respectively) satisfying necessary smoothness conditions [5]; this domain is assumed to obey Hooke's law

$$\varepsilon_{kl} = a_{klmn}\sigma_{mn}, \qquad \sigma_{kl} = b_{klmn}\varepsilon_{mn}.$$
 (1.1)

Hereinafter, ε_{kl} , σ_{kl} , a_{klmn} , and b_{klmn} are the components of strain tensors, stress tensors, elastic compliances, and elastic moduli, respectively; the subscripts k and l acquire the values 1, 2, and 3; summation is performed over repeated subscripts k and l.

The strains ε_{kl} are expressed in terms of the components u_k of the displacement vector \boldsymbol{u} by the Cauchy relations

$$\varepsilon_{kl} = (1/2)(u_{k,l} + u_{l,k}),$$
(1.2)

where the subscript after the comma indicates a partial derivative with respect to the corresponding coordinate.

There are no bulk forces, and the equilibrium equations have the form

$$\sigma_{kl,l} = 0. \tag{1.3}$$

The displacements and loads are known on one boundary of the domain v, e.g., on the boundary S_1 , i.e.,

$$\boldsymbol{u} = \boldsymbol{u}_*, \qquad \boldsymbol{p} = \boldsymbol{p}_* \qquad \text{on} \quad S_1, \tag{1.4}$$

390

0021-8944/06/4703-0390 \bigodot 2006 Springer Science + Business Media, Inc.

UDC 539.3

Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090; itsvel@hydro.nsc.ru. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 3, pp. 100–103, May–June, 2006. Original article submitted June 29, 2005.

where $\mathbf{p} = \{p_k\}, p_k = \sigma_{kl}n_l$ and n_k are the components of a unit vector of the external normal to S_1 , and $\mathbf{u}_* = \{u_{k*}\}$ and $\mathbf{p}_* = \{p_{k*}\}$ are functions defined on S_1 . We assume that $u_{k*} \in H^{1/2}(S_1)$ and $p_{k*} \in H^{-1/2}(S_1)$ (the spaces used here and in what follows are defined in [5]).

It should be noted that problem (1.1)-(1.4) formulated for determining the stress-strain state in the domain v arises also in considering a linearly elastic (viscoelastic) domain containing a physically nonlinear inclusion, where one has to generate a necessary (e.g., homogeneous) stress-strain state by choosing appropriate loads on the outer boundary of the domain [6, 7] or to obtain a necessary current or final shape of the inclusion, i.e., the corresponding displacements of the points of its boundary [8].

2. Iterative Method of Solving Problem (1.1)–(1.4). To solve the (u, p) problem [for a simply connected domain v with the boundary $S = S_1 \cup S_2$ with conditions (1.4) being set on some part S_1 of this boundary], Dveres and Fomin [4] proposed and tested the following iterative process. At the zeroth iteration (n = 0), it is assumed that $p = p_*$ on S_1 and $u = u^0$ on S_2 (u^0 is an arbitrary piecewise-continuous function, e.g., $u^0 = 0$). Solving this mixed problem, one can determine the stress–strain state in the domain v and the vectors u^0 and p^0 on the entire boundary $S = S_1 \cup S_2$. After that, the first condition in (1.4) is chosen on the part S_1 of the boundary at odd iterations and the second condition in (1.4) is chosen at even iterations; the loads and displacements found at the previous iteration are used on the part S_2 of the boundary. Thus, the boundary conditions have the form

$$u^{2n-1} = u_*$$
 on S_1 , $p^{2n-1} = p^{2n-2}$ on S_2 ,
 $p^{2n} = p_*$ on S_1 , $u^{2n} = u^{2n-1}$ on S_2 $(n = 1, 2 ...).$ (2.1)

As was noted above, the convergence of this iterative process to the solution of the (u, p) problem was not proved in [4].

Let us demonstrate that the sequence of the solutions \boldsymbol{u}^n of the mixed problems (1.1)–(1.3), (2.1) for the doubly connected domain considered reduces to the solution of the initial problem (1.1)–(1.4). We need to clarify that the vector $\boldsymbol{u}^0 = \{u_k^0\}$ on S_2 at the zeroth iteration is not arbitrary but is chosen in a manner that $u_k^0 \in H^{1/2}(S_2)$. Therefore, the solution \boldsymbol{u}^0 in the domain v of the mixed problem exists, and $u_k^0 \in H^1(v)$ [5]. Then, with allowance for the above-made assumptions about the functions \boldsymbol{u}_* and \boldsymbol{p}_* in Eq. (1.4), it follows from Eq. (2.1) that $u_k^n \in H^{1/2}(S_2)$ for the displacement vector $\boldsymbol{u}^n = \{u_k^n\}$ at each iteration, because the condition $u_k^n \in H^{1/2}(S_2)$ or $p_k^n \in H^{-1/2}(S_2)$ is satisfied on S_2 .

We introduce the norm for the field of displacements

$$\|\boldsymbol{u}\| = \left(\int\limits_{v} b_{klmn} u_{k,l} u_{m,n} \, dv\right)^{1/2},$$

which is equivalent to the norm $\|\boldsymbol{u}\|_{H^1(v)}$ [5, 8]. Because of (1.1)–(1.3) and the known equation of virtual work, we obtain the equality

$$\|\boldsymbol{u}\|^2 = \int\limits_{\boldsymbol{v}} \varepsilon_{kl} \sigma_{kl} \, d\boldsymbol{v} = \int\limits_{\boldsymbol{S}} \boldsymbol{u} \cdot \boldsymbol{p} \, d\boldsymbol{S} \qquad (\boldsymbol{S} = \boldsymbol{S}_1 \cup \boldsymbol{S}_2).$$
(2.2)

We consider the numerical sequence $\{a_n\}$ $(a_n = ||\Delta u^n||^2$, where $\Delta u^n = u^{n+1} - u^n$ and n = 1, 2, ...). Based on Eq. (2.2) and the equality $\Delta u^n \cdot \Delta p^n|_{S_2} = 0$ following from Eq. (2.1), the general term of this numerical sequence can be presented as

$$a_n = \int_{S_1} \Delta \boldsymbol{u}^n \cdot \Delta \boldsymbol{p}^n \, dS \ge 0 \qquad (n = 1, 2, \ldots).$$
(2.3)

From Eqs. (2.1) and (2.3), we find

$$a_{2n-1} = \int_{S_1} (\boldsymbol{p}_* - \boldsymbol{p}^{2n-1}) \cdot (\boldsymbol{u}^{2n} - \boldsymbol{u}_*) \, dS, \qquad a_{2n} = \int_{S_1} (\boldsymbol{p}_* - \boldsymbol{p}^{2n+1}) \cdot (\boldsymbol{u}^{2n} - \boldsymbol{u}_*) \, dS,$$

$$a_{2n+1} = \int_{S_1} (\boldsymbol{p}_* - \boldsymbol{p}^{2n+1}) \cdot (\boldsymbol{u}^{2n+2} - \boldsymbol{u}_*) \, dS.$$
(2.4)

391

Herefrom, we obtain

$$a_{2n} - a_{2n-1} = \int_{S_1} (\boldsymbol{p}^{2n-1} - \boldsymbol{p}^{2n+1}) \cdot (\boldsymbol{u}^{2n} - \boldsymbol{u}_*) \, dS = \int_{S} (\boldsymbol{p}^{2n-1} - \boldsymbol{p}^{2n+1}) \cdot (\boldsymbol{u}^{2n} - \boldsymbol{u}^{2n-1}) \, dS$$

because $\boldsymbol{u}^{2n-1} = \boldsymbol{u}_*$ on S_1 and $\boldsymbol{u}^{2n-1} = \boldsymbol{u}^{2n}$ on S_2 . Owing to Betti's identity and the equalities $\boldsymbol{u}^{2n-1} = \boldsymbol{u}^{2n+1} = \boldsymbol{u}_*$ on S_1 and $\boldsymbol{p}^{2n} = \boldsymbol{p}^{2n+1}$ on S_2 , we obtain

$$a_{2n} - a_{2n-1} = \int_{S} (\boldsymbol{u}^{2n-1} - \boldsymbol{u}^{2n+1}) \cdot (\boldsymbol{p}^{2n} - \boldsymbol{p}^{2n-1}) \, dS = -\|\boldsymbol{u}^{2n-1} - \boldsymbol{u}^{2n+1}\|^2$$

Similarly to the use of Eq. (2.4) and the equalities $p^{2n} = p^{2n+2} = p_*$ on S_1 and $p^{2n} = p^{2n+1}$ and $u^{2n+1} = u^{2n+2}$ on S_2 , we obtain

$$a_{2n+1} - a_{2n} = \int_{S_1} (\boldsymbol{p}_* - \boldsymbol{p}^{2n+1}) \cdot (\boldsymbol{u}^{2n+2} - \boldsymbol{u}^{2n}) \, dS = \int_{S} (\boldsymbol{p}^{2n} - \boldsymbol{p}^{2n+1}) \cdot (\boldsymbol{u}^{2n+2} - \boldsymbol{u}^{2n}) \, dS$$
$$= \int_{S} (\boldsymbol{u}^{2n} - \boldsymbol{u}^{2n+1}) \cdot (\boldsymbol{p}^{2n+2} - \boldsymbol{p}^{2n}) \, dS = -\|\boldsymbol{u}^{2n} - \boldsymbol{u}^{2n+2}\|^2.$$

Thus, for all n, we have

$$a_n = a_{n-1} - \|\boldsymbol{u}^{n+1} - \boldsymbol{u}^{n-1}\|^2.$$
(2.5)

It follows from Eq. (2.5) that sequence (2.3) is decreasing and bounded from below $(a_n \ge 0)$. Therefore, there exists $\lim_{n\to\infty} a_n \ge 0$. Then, from Eq. (2.5) we obtain $\lim_{n\to\infty} \|\boldsymbol{u}^{n+1} - \boldsymbol{u}^{n-1}\| = 0$, i.e., $\boldsymbol{u}^{n+1} \to \boldsymbol{u}^{n-1}$ in v and $\boldsymbol{u}^{n+1} \to \boldsymbol{u}^{n-1}$ and $\boldsymbol{p}^{n+1} \to \boldsymbol{p}^{n-1}$ on S.

By virtue of Eq. (2.1), on the part S_2 of the boundary, we have $\boldsymbol{u}^{2n+1} \rightarrow \boldsymbol{u}^{2n-1} = \boldsymbol{u}^{2n}$ and $\boldsymbol{p}^{2n+1} = \boldsymbol{p}^{2n}$ at odd iterations and $\boldsymbol{u}^{2n} = \boldsymbol{u}^{2n-1}$ and $\boldsymbol{p}^{2n} = \boldsymbol{p}^{2n+1} \rightarrow \boldsymbol{p}^{2n-1}$ at even iterations.

Thus, $\Delta \boldsymbol{u}^n = \boldsymbol{u}^{n+1} - \boldsymbol{u}^n \to 0$ and $\Delta \boldsymbol{p}^n = \boldsymbol{p}^{n+1} - \boldsymbol{p}^n \to 0$ on S_2 as $n \to \infty$.

Considering the $(\Delta \boldsymbol{u}^n, \Delta \boldsymbol{p}^n)$ problem for the domain v with the vectors $\Delta \boldsymbol{u}^n$ and $\Delta \boldsymbol{p}^n$ being known at the outer boundary S_2 of this domain [from the solution of problem (1.1)–(1.3), (2.1)], with $\Delta u_k^n \in H^{1/2}(S_2)$ and $\Delta p_k^n \in H^{-1/2}(S_2)$, and with strains $\Delta \varepsilon_{kl}^n$ and stresses $\Delta \sigma_{kl}^n$ being related through Hooke's law (1.1), we conclude that $\Delta u_k^n \in H^1(v) \to 0$ because $\Delta u_k^n \to 0$ and $\Delta p_k^n \to 0$ on S_2 . Hence, $\Delta \boldsymbol{p}^n \to 0$ and $\Delta \boldsymbol{u}^n \to 0$ on S_1 , i.e., $\boldsymbol{p}^n \to \boldsymbol{p}_*$ and $\boldsymbol{u}^n \to \boldsymbol{u}_*$, which was to be proved.

It should also be noted that, if the equality $a_n = a_{n-1}$ holds for some value of n, i.e., $u^{n+1} = u^{n-1}$ in v in accordance with Eq. (2.5), this means that the exact solution of the (u, p) problem is obtained already at the zeroth iteration, i.e., the value of the displacement vector u^0 on S_2 is correctly "guessed." Indeed, let, e.g., $u^{2n+1} = u^{2n-1}$ in v. Then, from Eq. (2.1), we obtain $p = p^{2n-1} = p^{2n-2}$ and $u = u^{2n-1}$ on the boundary S_2 at the (2n-1)th iteration, $u = u^{2n} = u^{2n-1}$ and $p = p^{2n}$ at the (2n)th iteration, $u = u^{2n+1} = u^{2n-1}$ and $p = p^{2n+1} = p^{2n-1} = p^{2n}$ at the (2n+1)th iteration, i.e., we have $u = u^{2n-1}$ and $p = p^{2n-1}$ on S_2 at even and odd iterations. By virtue of the uniqueness of the solution of the (u, p) problem (for the vectors u and p being set on S_2), we obtain $p^{2n-1} = p_*$ and $u^{2n-1} = u_*$ on S_1 ; the found values of u^{2n-1} and p^{2n-1} or p^{2n-1}) are contained in the boundary conditions on S_2 (e.g., $p^{2n-2} = p^{2n-1}$ on S_2), then we obtain the exact solution of this problem, including that for n = 0, by going "upward" through iterations.

We can also note that, if the boundary conditions on S_1 are supplemented by similar conditions on S_2 , i.e.,

$$u^{2n-1} = u_*$$
 on S_1 , $u^{2n-1} = u^{2n-2}$ on S_2 ,
 $p^{2n} = p_*$ on S_1 , $p^{2n} = p^{2n-1}$ on S_2 (2.6)

is used instead of Eq. (2.1), the iterative process becomes divergent. (This fact was noted in [4], but no proof was given.) Indeed, Eqs. (2.4) are also valid for the sequence $a_n = \|\Delta u^n\|^2$, but it follows in this case from Eq. (2.6) and Betti's identity that the equality $a_n = a_{n-1} + \|u^{n+1} - u^{n-1}\|^2$ holds for all n, i.e., the sign in the right side of Eq. (2.5) changes to the opposite one, and the sequence $\{a_n\}$ becomes increasing.

This work was supported by the Russian Foundation for Basic Research (Grant No. 05-01-00673).

392

REFERENCES

- A. A. Shvab, "Nonclassical elastoplastic problem," Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 1, 140–146 (1988).
- A. A. Shvab, "Ill-posed static problems of the elasticity theory," Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 6, 98–106 (1989).
- 3. M. M. Lavrent'ev, "The Cauchy problem for the Laplace equation," *Izv. Akad. Nauk SSSR, Ser. Mat.*, **20**, 819–842 (1956).
- M. N. Dveres and A. V. Fomin, "Analogy of methods of solving contact problems of stress state determination," Mashinovedenie, No. 6, 76–81 (1985).
- 5. G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Springer Verlag (1976).
- I. Yu. Tsvelodub, "Inverse problem for an elastic medium containing a physically nonlinear inclusion," *Prikl. Mat. Mekh.*, 64, No. 3, 424–430 (2000).
- I. Yu. Tsvelodub, "Spatial inverse problem for a physically nonlinear inhomogeneous medium," *Prikl. Mat. Mekh.*, 69, No. 2, 290–295 (2005).
- I. Yu. Tsvelodub, "Inverse problems of inelastic deformation of inhomogeneous media," Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 2, 61–69 (2005).